

A208698


T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 1 0 and 1 0 1 vertically


9



2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 14, 81, 98, 100, 16, 22, 196, 271, 358, 256, 26, 35, 484, 844, 1309, 1152, 676, 42, 56, 1225, 2706, 5524, 5371, 3910, 1764, 68, 90, 3136, 8977, 24086, 30160, 23637, 12994, 4624, 110, 145, 8100, 30168, 109599, 177488, 177872
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Table starts
..2....4.....6......9......14.......22.........35..........56...........90
..4...16....36.....81.....196......484.......1225........3136.........8100
..6...36....98....271.....844.....2706.......8977.......30168.......102384
.10..100...358...1309....5524....24086.....109599......506870......2376964
.16..256..1152...5371...30160...177488....1103081.....6990922.....45002090
.26..676..3910..23637..177872..1415508...12014735...104356568....923279444
.42.1764.12994.101069.1016258.10934750..126827983..1510509752..18362140414
.68.4624.43596.438103.5893862.85697362.1356513169.22125222702.369223577680


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..418


EXAMPLE

Some solutions for n=4 k=3
..0..1..0....0..0..0....1..0..1....0..0..0....1..1..0....1..1..1....0..0..0
..0..0..0....0..0..0....0..0..0....0..1..1....0..0..0....1..1..1....0..0..0
..1..0..1....1..0..1....0..0..0....0..1..1....0..0..0....0..1..0....1..1..0
..1..0..1....1..0..1....0..1..1....0..1..0....0..1..1....0..1..0....1..1..0


CROSSREFS

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207462
Column 4 is A207914
Row 1 is A001611(n+2)
Row 2 is A207436
Row 3 is A207939
Sequence in context: A207467 A207918 A207519 * A207928 A207858 A208379
Adjacent sequences: A208695 A208696 A208697 * A208699 A208700 A208701


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin Mar 01 2012


STATUS

approved



